RPSC School Lecturer Mathematics Syllabus in Hindi PDF

RPSC School Lecturer Mathematics Syllabus in Hindi PDF: इस पोस्ट में राजस्थान लोक सेवा आयोग द्वारा आयोजित स्कूल व्याख्याता भर्ती परीक्षा गणित विषय का पाठ्यक्रम एवं परीक्षा पैटर्न उपलब्ध करवाया गया है। यह पाठ्यक्रम और परीक्षा पैटर्न हिन्दी व अंग्रेजी भाषाओं मे उपलब्ध करवाया गया है। यदि आप राजस्थान स्कूल व्याख्याता भर्ती परीक्षा की तैयारी कर रहे है तो यह पोस्ट आपके लिए बेहद ही उपयोगी एवं महत्वपूर्ण है। इस पोस्ट में गणित विषय के पाठ्यक्रम और परीक्षा पैटर्न से संबंधित सम्पूर्ण जानकारी उपलब्ध करवाई गई है। RPSC School Lecturer Mathematics Exam Pattern, RPSC 1st Grade Mathematics Syllabus, RPSC 1st Grade Mathematics Exam Pattern

Exam OrganizerRajasthan Public Service Commission
Exam NameRPSC School Lecturer
CategorySyllabus
PaperPaper – II Mathematics
Official Websiterpsc.rajasthan.gov.in
India GK Zone HomeIndiaGKZone.com
RPSC School Lecturer Mathematics Syllabus in Hindi PDF

In this post, the syllabus and exam pattern of the school lecturer recruitment examination conducted by the Rajasthan Public Service Commission have been provided. This syllabus and exam pattern has been made available in Hindi and English languages. If you are preparing for Rajasthan School Lecturer Recruitment Exam then this post is very useful and important for you. In this post, complete information related to the syllabus and exam pattern of Mathematics subject has been provided.

RPSC School Lecturer Mathematics Exam Pattern

1. All the question in the Paper shall be Multiple Choice Type Question.
2. Negative marking shall be applicable in the evaluation of answers. For every wrong answer one-third of the marks prescribed for that particular question shall be deducted.
Explanation : Wrong answer shall mean an incorrect answer or multiple answer.
3. Duration of the paper shall be 3 Hours.

1. पेपर में सभी प्रश्न बहुविकल्पीय प्रकार के प्रश्न होंगे।
2. उत्तर के मूल्यांकन में नकारात्मक अंकन लागू होगा। प्रत्येक गलत उत्तर के लिए उस विशेष प्रश्न के लिए निर्धारित अंकों में से एक तिहाई अंक काटे जाएंगे।
व्याख्या: गलत उत्तर का अर्थ गलत उत्तर या एकाधिक उत्तर होगा।
3. पेपर की अवधि 3 घंटे होगी।

SubejctNo. of QuestionsTotal Marks
Knowledge of Subject Concerned : Senior Secondary Level55110
Knowledge of Subject Concerned : Graduation Level55110
Knowledge of Subject Concerned : Post Graduation Level1020
Educational Psychology, Pedagogy, Teaching Learning Material, Use of Computers and Information Technology in Teaching Learning3060
Total150300

RPSC School Lecturer Mathematics Syllabus in Hindi PDF

Part – I (Senior Secondary Standard)

1. Sets, Relations and Functions : Different kinds of sets and their basic properties, Relations, types of relations, Different types of real valued functions.
2. Limit, Continuity and Differentiability : Limit, continuity and differentiability of algebraic functions, trigonometric functions, exponential functions and logarithmic functions.
3. Complex and Vector Algebra : Complex numbers and their algebraic properties, polar representation, square root of a complex number, Vectors and scalars, types of vectors and their algebraic properties, scalar and vector product of two vectors, scalar triple product.
4. Differential calculus : Derivatives of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions. Derivatives of implicit and explicit functions. Increasing and decreasing functions. Concept of second order derivative.
5. Integral calculus : Integration of functions by the method of substitution, partial fraction and by parts. Basic properties of definite integrals and their uses to evaluate them.
6. Differential equations : Order and degree of a differential equation, solution of differential equations of first order and first degree.
7. Permutations and combinations : Derivation of formulae, their connections and simple applications.
Binomial theorem : Binomial theorem for positive integral indices, general and middle terms in binomial expansion.
8. Matrices : Various types of matrices, their basic operations and properties. Invertible matrices and their inverse.
Determinant : Determinant of a square matrix and their properties. Solution of system of linear equations in two or three variables using inverse of a matrix.
9. Two dimensional geometry : Straight line, standard equations and simple properties of circle, parabola, ellipse, hyperbola.
10. Applications of derivatives and integrals : Tangent and normals, maxima and minima of functions of one variable. Area under simple curves, area between the simple curves.
11. Statistics : Mean, Mode, Median for grouped data, measure of dispersion. Probability and their elementary laws, conditional probability.

1. सेट, संबंध और कार्य: विभिन्न प्रकार के सेट और उनके मूल गुण, संबंध, संबंध के प्रकार, विभिन्न प्रकार के वास्तविक मूल्यवान कार्य।
2. सीमा, निरंतरता और भिन्नता: बीजगणितीय कार्यों, त्रिकोणमितीय कार्यों, घातीय कार्यों और लॉगरिदमिक कार्यों की सीमा, निरंतरता और भिन्नता।
3. जटिल और वेक्टर बीजगणित: जटिल संख्याएं और उनके बीजगणितीय गुण, ध्रुवीय प्रतिनिधित्व, एक जटिल संख्या का वर्गमूल, सदिश और अदिश, सदिशों के प्रकार और उनके बीजीय गुण, दो सदिशों के अदिश और सदिश गुणनफल, अदिश त्रिगुण उत्पाद।
4. डिफरेंशियल कैलकुलस: योग, अंतर, उत्पाद और कार्यों के भागफल के व्युत्पन्न। बहुपद और त्रिकोणमितीय कार्यों के व्युत्पन्न। निहित और स्पष्ट कार्यों के डेरिवेटिव। बढ़ते और घटते कार्य। दूसरे क्रम के व्युत्पन्न की अवधारणा।
5. इंटीग्रल कैलकुलस: प्रतिस्थापन की विधि, आंशिक अंश और भागों द्वारा कार्यों का एकीकरण। निश्चित समाकलों के मूल गुण और उनका मूल्यांकन करने के लिए उनका उपयोग।
6. अवकल समीकरण : अवकल समीकरण का क्रम और घात, प्रथम कोटि के अवकल समीकरणों का हल और प्रथम घात।
7. क्रमपरिवर्तन और संयोजन: सूत्रों की व्युत्पत्ति, उनके कनेक्शन और सरल अनुप्रयोग।
द्विपद प्रमेय: सकारात्मक अभिन्न सूचकांकों के लिए द्विपद प्रमेय, द्विपद विस्तार में सामान्य और मध्य पद।
8. मैट्रिक्स: विभिन्न प्रकार के मैट्रिक्स, उनके मूल संचालन और गुण। व्युत्क्रम मैट्रिक्स और उनके व्युत्क्रम।
सारणिक: एक वर्ग मैट्रिक्स के निर्धारक और उनके गुण। एक मैट्रिक्स के व्युत्क्रम का उपयोग करके दो या तीन चर में रैखिक समीकरणों की प्रणाली का समाधान।
9. द्विविमीय ज्यामिति : सीधी रेखा, मानक समीकरण और वृत्त, परवलय, दीर्घवृत्त, अतिपरवलय के सरल गुण।
10. डेरिवेटिव और इंटीग्रल के अनुप्रयोग: स्पर्शरेखा और मानदंड, एक चर के कार्यों की अधिकतम और न्यूनतम। साधारण वक्रों के अंतर्गत क्षेत्रफल, सरल वक्रों के बीच का क्षेत्र।
11. सांख्यिकी: समूहित आंकड़ों के लिए माध्य, बहुलक, माध्यिका, परिक्षेपण का माप। प्रायिकता और उनके प्राथमिक नियम, सशर्त प्रायिकता।

Part – II (Graduation Standard)

1. Group Theory : Groups and their simple properties, order of an element, order of a group, permutation groups, cyclic groups and their properties, subgroups and their basic algebraic properties, cosets and their properties.
2. Normal subgroup and Rings : Normal subgroups and quotient groups, theorems on homomorphism and isomorphism. Rings, ideals, integral domain and fields.
3. Theory of equations : Relation between the roots and coefficients of general polynomial equation in one variable. Transformation of equations. Descartes’ rule of signs, solution of cubic equations by Cardon’s method, Biquadratic equations by Ferari’s method.
4. Calculus : Partial derivatives, curvature, asymptotes, envelopes and evolutes, maxima and minima of functions upto two variables, Beta and Gamma functions, double and triple integrals.
5. Advanced Calculus : Mean value theorems (Rolle’s, Lagrange’s, Taylor’s theorems), sequence and series with convergence properties.
6. Complex Analysis : Continuity and differentiability of complex functions, Analytic functions, Cauchy – Riemman equation, Harmonic functions. Conformal mappings.
7. Ordinary and Partial differential equations : Linear differential equations of first order and higher degree, Clairaut’s form, Linear differential equations of constant coefficients, ordinary homogeneous differential equations, Linear differential equations of second order with variable coefficients. Partial differential equations of first order, solution by Lagrange’s method.
8. Vector calculus : Gradient, divergence and curl, identities related to them. Line, surface and volume integrals. Applications of Gauss, Stoke’s and Green’s theorems.
9. Three dimensional geometry : Direction ratios and cosines, straight line, plane, sphere, cone and cylinder.
10. Statics : Equilibrium of co-planner forces, moments, friction, virtual work catenary.
11. Dynamics : Velocities and acceleration along radial and transverse directions and along tangential and normal directions, simple harmonic motion, Rectilinear motion under variable laws, Hook’s law and problems, projectiles.

1. समूह सिद्धांत: समूह और उनके सरल गुण, एक तत्व का क्रम, एक समूह का क्रम, क्रमपरिवर्तन समूह, चक्रीय समूह और उनके गुण, उपसमूह और उनके मूल बीजीय गुण, कोसेट और उनके गुण।
2. सामान्य उपसमूह और वलय: सामान्य उपसमूह और भागफल समूह, समरूपता और समरूपता पर प्रमेय। अंगूठियां, आदर्श, अभिन्न डोमेन और क्षेत्र।
3. समीकरणों का सिद्धांत : एक चर में सामान्य बहुपद समीकरण के मूलों और गुणांकों के बीच संबंध। समीकरणों का परिवर्तन। डेसकार्टेस के संकेतों का नियम, कार्डन की विधि द्वारा घन समीकरणों का समाधान, फेरारी की विधि द्वारा द्विघात समीकरण।
4. कैलकुलस : आंशिक व्युत्पन्न, वक्रता, स्पर्शोन्मुख, लिफाफा और इवोल्यूशन, अधिकतम और दो चर तक के कार्यों की न्यूनतम, बीटा और गामा फ़ंक्शन, डबल और ट्रिपल इंटीग्रल।
5. उन्नत कैलकुलस: माध्य मान प्रमेय (रोल, लैग्रेंज, टेलर के प्रमेय), अनुक्रम और अभिसरण गुणों के साथ श्रृंखला।
6. जटिल विश्लेषण: जटिल कार्यों की निरंतरता और भिन्नता, विश्लेषणात्मक कार्य, कॉची – रीमैन समीकरण, हार्मोनिक फ़ंक्शन। अनुरूप मानचित्रण।
7. साधारण और आंशिक अंतर समीकरण: पहले क्रम और उच्च डिग्री के रैखिक अंतर समीकरण, क्लैरॉट का रूप, निरंतर गुणांक के रैखिक अंतर समीकरण, साधारण सजातीय अंतर समीकरण, चर गुणांक के साथ दूसरे क्रम के रैखिक अंतर समीकरण। प्रथम कोटि के आंशिक अवकल समीकरण, लैग्रेंज विधि द्वारा हल।
8. सदिश कलन : ढाल, विचलन और वक्र, उनसे संबंधित सर्वसमिकाएँ। रेखा, सतह और आयतन समाकलन। गॉस, स्टोक और ग्रीन के प्रमेयों के अनुप्रयोग।
9. त्रिविमीय ज्यामिति : दिशा अनुपात और कोज्या, सीधी रेखा, समतल, गोला, शंकु और बेलन।
10. स्टैटिक्स: सह-योजनाकार बलों का संतुलन, क्षण, घर्षण, आभासी कार्य कैटेनरी।
11. गतिकी: रेडियल और अनुप्रस्थ दिशाओं के साथ वेग और त्वरण और स्पर्शरेखा और सामान्य दिशाओं के साथ, सरल हार्मोनिक गति, चर कानूनों के तहत आयताकार गति, हुक का नियम और समस्याएं, प्रोजेक्टाइल।

Part – III (Post Graduation Standard)

1. Linear Algebra and Metric Space : Vector spaces, linear dependence and independence, bases, dimensions, linear transformations, matrix representation, algebra of matrices, characteristic roots and vectors, determinants, Cayley – Hamilton theorem.
Metric Spaces : Bounded and unbounded metric spaces. Open and closed sets in a metric space, Cantor’s ternary set, closure, bases, product spaces.
2. Integral transforms and special functions : Hyper-geometric functions, Legendre’s polynomials, Bessel’s functions. Recurrence relations and orthogonal properties. Laplace transform, inverse Laplace transform. Fourier sine and cosine transforms. Convolution theorem.
3. Differential Geometry and Tensors : Curves in spaces, Curvature, Torsion, Skew curvature, Serret – Frenet formulae. Helices Osculating circle and sphere. Types of tensors and their algebraic properties. Christoffel’s symbols, covariant and contravariant differentiation, Geodesics.
4. Numerical Analysis : Newton’s formula for forward and backward interpolation for equal intervals, Divided difference, Newton’s Lagrange’s, Starling’s and Bessel’s interpolation formulae.
5. Optimization Technique’s : Convex set and its properties. Solution of a L.P.P. by using Simplex methods. Duality, Assignment, Transportation and Game theory.

1. रैखिक बीजगणित और मीट्रिक स्थान: वेक्टर रिक्त स्थान, रैखिक निर्भरता और स्वतंत्रता, आधार, आयाम, रैखिक परिवर्तन, मैट्रिक्स प्रतिनिधित्व, मैट्रिक्स का बीजगणित, विशेषता जड़ें और वैक्टर, निर्धारक, केली – हैमिल्टन प्रमेय।
मेट्रिक स्पेस : बाउंडेड और अनबाउंड मेट्रिक स्पेस। एक मीट्रिक स्थान, कैंटर के टर्नरी सेट, क्लोजर, बेस, उत्पाद रिक्त स्थान में खुले और बंद सेट।
2. अभिन्न परिवर्तन और विशेष कार्य: हाइपर-ज्यामितीय कार्य, लीजेंड्रे के बहुपद, बेसेल के कार्य। पुनरावृत्ति संबंध और ऑर्थोगोनल गुण। लाप्लास परिवर्तन, उलटा लाप्लास परिवर्तन। फूरियर साइन और कोसाइन ट्रांसफॉर्म। कनवल्शन प्रमेय।
3. डिफरेंशियल ज्योमेट्री और टेंसर: रिक्त स्थान में वक्र, वक्रता, मरोड़, तिरछा वक्रता, सेरेट – फ्रेनेट सूत्र। हेलिस ऑस्क्यूलेटिंग सर्कल और गोले। टेंसर के प्रकार और उनके बीजीय गुण। क्रिस्टोफेल के प्रतीक, सहसंयोजक और विरोधाभासी भेदभाव, जियोडेसिक्स।
4. संख्यात्मक विश्लेषण: समान अंतराल के लिए आगे और पीछे के प्रक्षेप के लिए न्यूटन का सूत्र, विभाजित अंतर, न्यूटन का लैग्रेंज का, स्टार्लिंग का और बेसेल का प्रक्षेप सूत्र।
5. अनुकूलन तकनीक: उत्तल सेट और इसके गुण। एक एल.पी.पी. का समाधान सिम्प्लेक्स विधियों का उपयोग करके। द्वैत, असाइनमेंट, परिवहन और गेम थ्योरी।

Part – IV (Educational Psychology, Pedagogy, Teaching Learning Material, Use of computers and Information Technology in Teaching Learning)

1. Importance of Psychology in Teaching-Learning :

  • Learner,
  • Teacher,
  • Teaching-learning process,
  • School effectiveness.

2. Development of Learner :

  • Cognitive, Physical, Social, Emotional and Moral development patterns and characteristics among adolescent learner.

3. Teaching – Learning :

  • Concept, Behavioural, Cognitive and constructivist principles of learning and its implication for senior secondary students.
  • Learning characteristics of adolescent and its implication for teaching.

4. Managing Adolescent Learner :

  • Concept of mental health and adjustment problems.
  • Emotional Intelligence and its implication for mental health of adolescent.
  • Use of guidance techniques for nurturing mental health of adolescent.

5. Instructional Strategies for Adolescent Learner :

  • Communication skills and its use.
  • Preparation and use of teaching-learning material during teaching.
  • Different teaching approaches:
    Teaching models- Advance organizer, Scientific enquiry, Information, processing, cooperative learning.
  • Constructivist principles based Teaching.

6. ICT Pedagogy Integration :

  • Concept of ICT.
  • Concept of hardware and software.
  • System approach to instruction.
  • Computer assisted learning.
  • Computer aided instruction.
  • Factors facilitating ICT pedagogy integration

1. शिक्षण-अधिगम में मनोविज्ञान का महत्व :

  • सिखाने वाला,
  • शिक्षक,
    *शिक्षण-सीखने की प्रक्रिया,
  • स्कूल प्रभावशीलता।

2. शिक्षार्थी का विकास :

  • किशोर शिक्षार्थी के बीच संज्ञानात्मक, शारीरिक, सामाजिक, भावनात्मक और नैतिक विकास पैटर्न और विशेषताएं।

3. शिक्षण – सीखना :

  • वरिष्ठ माध्यमिक छात्रों के लिए सीखने की अवधारणा, व्यवहार, संज्ञानात्मक और रचनावादी सिद्धांत और इसके निहितार्थ।
    *किशोरावस्था की सीखने की विशेषताएं और शिक्षण के लिए इसके निहितार्थ।

4. किशोर शिक्षार्थी का प्रबंधन :

  • मानसिक स्वास्थ्य और समायोजन समस्याओं की अवधारणा।
  • भावनात्मक बुद्धिमत्ता और किशोरों के मानसिक स्वास्थ्य के लिए इसके निहितार्थ।
    *किशोरावस्था के मानसिक स्वास्थ्य के पोषण के लिए मार्गदर्शन तकनीकों का प्रयोग।

5. किशोर शिक्षार्थी के लिए निर्देशात्मक रणनीतियाँ:

  • संचार कौशल और इसका उपयोग।
  • शिक्षण के दौरान शिक्षण-अधिगम सामग्री तैयार करना और उसका उपयोग करना।
  • विभिन्न शिक्षण दृष्टिकोण:
    टीचिंग मॉडल्स- एडवांस ऑर्गनाइजर, साइंटिफिक इंक्वायरी, इंफॉर्मेशन, प्रोसेसिंग, कोऑपरेटिव लर्निंग।
  • रचनावादी सिद्धांत आधारित शिक्षण।

6. आईसीटी शिक्षाशास्त्र एकीकरण:

  • आईसीटी की अवधारणा।
  • हार्डवेयर और सॉफ्टवेयर की अवधारणा।
  • निर्देश के लिए सिस्टम दृष्टिकोण।
  • कंप्यूटर असिस्टेड लर्निंग।
  • कंप्यूटर एडेड निर्देश।
  • आईसीटी शिक्षाशास्त्र एकीकरण को सुविधाजनक बनाने वाले कारक

RPSC School Lecturer Mathematics Syllabus in Hindi PDF, RPSC School Lecturer Mathematics Exam Pattern, RPSC 1st Grade Mathematics Syllabus, RPSC 1st Grade Mathematics Exam Pattern